Category Archives: Engaging Learning Environments

Conceptual analysis for decolonising Australia’s learning futures: Implications for education

Professor Michael (מיכאל) Singh (ਸਿੰਘ)

Bionote

A postmonolingual teacher-researcher, Professor Singh’s work focuses on extending and deepening teacher education students’ literacy skills through using their full repertoire of languages-and-knowledge; equipping them to meet the demands of teaching Australia’s multilingual students, and increasing their confidence in the added value postmonolingual skills provide graduating teachers. He enjoys watching movies that make postmonolingual practices visible, such Bastille Day and The Great Wall (长城), and the xenolinguistics of Arrived. Having an interest in polyglot programming he is able to write, incorrectly in 11 languages, “I am not a terrorist.”

Re: Conceptualising learning futures

The concepts we use in education are important. Concepts express educational values, assign status to the students with whom we work, and provide the basis for rules for governing the moral enterprise that is education.

Now and then, it is important to pause in our busy working-life to think critically about the concepts we use in education. Against the technologically driven speeding up of education, it is desirable to slow down, to contemplate if some concepts have accumulated unwarranted baggage that poses risks we might have overlooked.

Currently, I am using the method of concept analysis (Walker & Avant, 2005) in a project that is exploring ways of making better use multilingual students’ repertoire of languages-and-knowledge (Singh, 2019).

Concept analysis provides a framework that educators can use to analyse existing labels related to our working-life so as to develop guidelines for leading students’ learning futures. Findings from my research employing this method are presented below (Singh, 2017; 2018).

The aim of this conceptual analysis was to determine how the concept of ‘culturally and linguistically diverse’ (CALD) was constructed and is interpreted in education.

In determining the defining attributes of CALD, the intellectual roots for this concept can be located in the sociological theory of labelling. Where diversity is framed as a social pathology it is equated with deviance, and standing as against the stability of the prevailing cultural-linguistic order in education.

Adusei-Asante and Adibi (2018) indicate that CALD is attributed to students who are framed as problems. They ‘fail’ to meet the requirements of the cultural-linguistic order because they have limited proficiency in a particular version of English.

A historical antecedent for CALD is Australia’s Immigration Restriction Act 1901 which prohibited the educational use of languages from beyond Europe in Australia’s colleges, schools and universities. The dictation test in Section 3(a) of the Act was designed to be failed by persons who spoke languages originating outside Europe and thereby to exclude them and their languages from Australia.

In the 1970s the concept ‘Non-English Speaking Background (NESB) was applied to persons in Australia who spoke languages originating from elsewhere than Europe. However, this concept proved inappropriate for measuring linguistic diversity, overly simplistic in its approach to providing educational services, neglectful of the intellectual value of students’ linguistic diversity, and loaded with negative connotations. In its Standards for Statistics on Cultural and Language Diversity (McLennan, 1999) the Australian Bureau of Statistics stated that this concept and related terms should be avoided.

Consequently, CALD began to be used. CALD drew attention to students’ cultural-linguistic characteristics, did not label them based on what they are not, and enhanced professionalisation of those working in this field.

However, CALD is now a borderline concept because it has taken on the negative connotations of NESB (Adusei-Asante & Adibi, 2018).

CALD is now associated with the negative portrayal of students as learning problems. Further, CALD marks students as having the inability to relate to the prevailing cultural-linguistic expectations of Australian educational institutions. Specifically, CALD is the category for students having difficulty with writing in English; some are said to have no hope of learning English outside academic English literacy programs.

What are the implications of this conceptual analysis for decolonising Australia’s learning futures?

First, Australian educators who speak languages from multilingual Ghana and Iran (e.g. Adusei-Asante & Adibi, 2018), are contributing to the transformational leadership required for decolonising Australia’s learning futures.

Second, from time-to-time it is necessary to question our taken-for-granted use of concepts to explore the challenges they present, rather than treat them uncritically.

Third, to provide more precision in educational terminology there is a need for multiple concepts, rather than looking for a single concept to replace NESB or CALD.

Fourth, the century-old prohibition on the using languages from outside Europe for knowledge production and dissemination in Australia’s colleges, schools and universities must be reversed.

To illustrate the possibilities for postmonolingual education and research let us briefly consider concepts related to International Women’s Day (8th March 2019). To add educational value to the capabilities of students who speak English and Zhōngwén (中文) they could make meaning of issues relating to ‘thinking equal, building smart, innovating for change by:

  1. thinking marriage equality through Li Tingting (李婷婷) and Li Maizi (李麦子).
  2. using the cross-sociolinguistic sound similarities of Mǐ Tù (米兔) to explore what it means for sexual harassment regulations.
  3. building knowledge in METALS — mathematics, engineering, technologies, arts, language and science — through using the concept chìjiǎo lǜshī (赤脚律师) for critical thinking
  4. building research smarts through theorising population policy using the concept of shèngnǚ (剩女)

Slowing down to decolonise Australia’s learning futures reminds us that a source of educational knowledge is internal to student-teacher themselves and is to be found in their repertoire of languages-and-knowledge.

 

Acknowledgement

Thanks to the Decolonising Learning Futures: Postmonolingual Education and Research Research Cohort for their feedback on this post.

References

Adusei-Asante, K., & Adibi, H. (2018). The ‘Culturally and Linguistically Diverse’ (CALD) label: A critique using African migrants as exemplar. The Australasian Review of African Studies, 39(2), 74-94.

McLennan, W. (1999). Standards for Statistics on Cultural and Language Diversity. Canberra, Australia: Australian Bureau of Statistics.

Singh, M. (2017). Post-monolingual research methodology: Multilingual researchers democratizing theorizing and doctoral education. Education Sciences, 7(1), 28.

Walker, L. & Avant, K. (2005). The Strategies of Theory Construction in Nursing. Upper Saddle River, NJ: Pearson-Prentice Hall.

Science Focused Makerspaces: Transforming Learning in Teacher Education

By Jessy Abraham and Philip Smith

“Now I feel like a man!” exclaimed a female pre-service teacher. For the first time in her life she had used an electric drill, when she was constructing an artefact for an assessment task in the Primary Science & Technology unit (PS&T). Although unwittingly entrenching the prevailing stereotypical gendered expectations about the use of physical technology tools, this comment flags one of the major challenges that these teachers – especially female teachers- face: namely, the lack of technological self-efficacy. The lack of teacher confidence in using physical technology tools and integrating the use of such tools in classroom teaching are recurring themes in science teacher education literature and may have future negative impact on students in classrooms.

Confronting and overcoming such fears cannot be dismissed as a ‘female problem’. However, gender has been shown to be one of the determining factors of technological self-efficacy. Although the overall findings regarding gender differences in technological self-efficacy are inconclusive, males tend to score higher than females on specific scales. This could be related to the gendered norms and expectations created by society which in turn enhance attitudes and eventually expertise in using such tools.

The science teaching team conducted an informal survey in 2017 among 106 pre serve teachers (90 females and 16 males) regarding their perceived expertise and confidence in using physical technological tools like power drills or soldering irons. The results showed that while females displayed a low rating of 2.9 on average; the males’ rating was 3.5 (scale mean 3). While 50 percent of the females were extremely negative or negative about using such physical technology tools in their classrooms, only 19% males were negative. Only 33% females reported that they were either positive or extremely positive in using physical technology tools, in comparison to 56% of the male cohort.

Bandura (1977) identifies four general sources of self-efficacy: performance accomplishments, vicarious experiences, verbal persuasion, and physiological states. Studies suggest that there are differences in the way these sources influence both genders. For example, the most influential source of Science, Technology, Engineering and Mathematics (STEM) self-efficacy for men has been identified as the mastery experience, while for women vicarious experiences and social persuasion were the prominent influences (e.g., Zeldin & Pajares, 2000). This prompted the WSU science team to establish Makerspaces focusing on improving students’ self-efficacy through vicarious experiences and social persuasion.

Makerspaces are becoming more common in Australian universities (Wong & Partridge, 2016). They are defined as a creative physical space where students can explore, play, design, invent and build new projects and technologies (Blackley et al., 2017). In such an informal space, students have the opportunity to become involved with collaborative hands-on projects that promote experiential learning. Maker movements can also develop a mentality among participants leading them to realise that they could be a creator rather than just a consumer. By easily incorporating a variety of STEM topics, Makerspaces are a great means to engage students in STEM. For example, E-textiles and soft circuitry, (circuits that are sewn using conductive thread or fabric), have shown to be an engaging way to teach electronics and programming (Thomas, 2012).

The key purpose of PS&T unit’s Makerspaces are to create space for pre-service teachers to learn, play, make and explore in the teaching areas of science and technology in a flexible and supportive setting. The preferred way of learning is underpinned by a social constructivist perspective, where new knowledge was developed through collaboration, social interactions, and the use of shared classroom communication (Martinez & Stager, 2013). Our Makerspaces focus on Exploratory Fabrication Technologies (EFT): technologies centred on fabrication (activities oriented towards invention, construction and design) and those centred on exploration (activities oriented towards expression, tinkering, learning, and discovery) (Blikstein, Kabayadondo, Martin, & Fields, 2017). The EFT tools include hot glue guns, heat guns, soldering irons, wire solders, and power tools such as drills, sanders and saws.

Science teaching staff are on hand in our Makerspaces to facilitate learning, making and exploring. They assist participants with specific skills: training, investigation of materials and resources, and use of tools. Staff help participants to develop a product for use in their primary classrooms. These include solar ovens, slime, battery-operated cars, wax wraps, kites, magnetic circuits, crystal snowflakes and a cloth number-counting resource. Participants also investigate classroom resources such as science kits, a seed germination observation kit, and other botanical displays; and use common tools such as power drills, soldering irons, cutters and saws and 3D printers. For some, this is their first chance to learn how to use a soldering iron or a drill. Students also get involved in skill development of their peers. For example, those who had already learnt how to use the soldering iron teach other students how to solder. Participants are given resources related to the development of Makerspaces within educational settings and a small collection useful websites.

Students appreciate the opportunity to experience hands-on activities they can use in their own teaching. They acknowledge the importance of the trial and error approach, importance of peer-to-peer discussions and the relaxed environment while they acquire new skills.   A number of students said the event built their confidence to use tools, to experiment, and to do science. Some appreciate seeing what teaching and learning resources are available for teaching science and technology and some learn how to organise MS at their school.

The overwhelming student support for Makerspaces has implications for schools. ‘Making’ can happen in a variety of places other than STEM-related concepts and technology-based activities. Makerspaces can promote a ‘community of practitioners’ and transform the way students can collaborate and learn.

About the authors:

Jessy Abraham received her PhD in Education from the University of Western Sydney in 2013. She lectures in Primary Science and Technology.  Before joining UWS she worked as a science teacher in NSW schools.  Her research interests are in the area of student motivation, engagement and retention in sciences. Her research employs sophisticated quantitative analyses. Currently her research is focused on pre-service science teachers and practices that enhance their self-efficacy in teaching science in primary school settings.

Philip Smith is a casual academic specialising in science education at Western Sydney University.

References

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-215

Blikstein, P., Kabayadondo, Z., Martin, A. and Fields, D. (2017), An Assessment Instrument of Technological Literacies in Makerspaces and FabLabs. J. Eng. Educ., 106: 149–175. doi:10.1002/jee.20156

Blackley, S., Sheffield, R., Maynard, N., Koul, R., & Walker, R. (2017). Makerspace and Reflective Practice: Advancing Pre-service Teachers in STEM Education. Australian Journal of Teacher Education, 42(3). http://dx.doi.org/10.14221/ajte.2017v42n3.2

Martinez, S. L., & Stager, G. (2013). Invent to learn: Making, tinkering, and engineering in the classroom. Torrance, CA: Constructing modern knowledge press.

Thomas, A. ( 2012) Engaging Students in the STEM Classroom Through “Making” https://www.edutopia.org/blog/stem-engagement-maker-movement-annmarie-thomas, Retrieved on 13 Feb,2018.

Wong, A., & Partridge, H. (2016) Making as Learning: Makerspaces in Universities, Australian Academic & Research Libraries, 47:3, 143-159, DOI: 10.1080/00048623.2016.1228163

Zeldin, A.L., & Pajares, F. (2000). Against the odds: Self-efficacy beliefs of women in mathematical, scientific, and technological careers. American Educational Research Journal, 37, 215-246.

Teaching Empathy? It’s a Process: Drama in the Primary Classroom

By Rachael Jacobs

Recently a lesson on the Stolen Generations, conducted at a Sydney school, went horribly wrong. Year 4 students were engaged in a day long ‘role-play’ in which they were told they would be removed from their families.

According to reports , a nun entered the classroom in the morning, with a letter from the Prime Minister, and told the class they would be taken away from their parents, as they weren’t being looked after properly. The exercise continued for five hours until the end of the school day when students were informed that this was a lesson on the Stolen Generations, and were asked how it made them feel.

While there was extreme concern expressed from the media and parents, Drama teachers all over watched this episode aghast, wondering how such a potentially powerful lesson had gone so wrong.

It seems an attempt was made to use the drama conventions of teacher-in-role and role play. These are two strategies found in the beautiful and transformative pedagogy of ‘Process Drama’.  Process Drama is a powerful teaching tool when used ethically, but it seems it wasn’t employed carefully in this instance. This lesson seemed much more like ‘invisible theatre’ where the participants did not know that they were in a fictional context or that the teacher was in role.

Invisible theatre is more commonly used with adults, whereas Process Drama has a pedagogy of care built in. In Process Drama, students know they are in the drama and in the fiction.  Students and the teacher move in and out of role; they don’t play themselves, rather they take on the roles of other people. At the end of a particular strategy or moment in the class, students may need to de-role (get out of role) and discuss and debrief the moments when they were in role. It’s a process students are familiar with. We see small children playing and going in and out of role all the time. When educators use drama in this way, they are protecting their students in role. Through role, we avoid the manipulation of ‘psycho-drama’ and can explore the space where the real world and the fictional world overlaps.

The teachers in the school concerned were acting with the best of intentions. They may have seen highly transformative learning experiences, such as Jane Elliot’s Blue Eyes/Brown Eyes experiment  and attempted to replicate these lessons.  It should be noted that the Blue Eyes/Brown Eyes lesson sparked outrage at the time, but is now considered a watershed moment in addressing racism in schools.

However, there are limits to Process Drama’s reach. Process Drama has been critiqued for its attempt to replicate the experiences of disadvantaged people at critical times in history. Can we really ever understand what it’s like to be part of the Stolen Generations, and is it offensive to suggest that we can replicate those experiences?  Indigenous children’s writer, Trina Saffioti, whose books were used to inspire the school’s lessons, was deeply uncomfortable with the exercise, stating that it almost cheapens the experience .

While it’s true that we can never truly understand what it was like to be a part of the Stolen Generations, the ability to see life from another’s perspective may be the most important lessons that one can ever learn.

It is abundantly clear that those facilitating these lessons were ill prepared for the nuances of this delicate teaching strategy. The transformative power of drama is still largely misunderstood in schools. New teachers can have as little as two hours training in Drama in their teacher preparation courses and this is a failure of our system . Many teachers would like to use drama to enhance empathy, challenge students’ worldviews, and to facilitate deep and critical thinking, but often don’t know where to start. If teachers make a misguided attempt, or no attempt at all, we deny our students the opportunity for them to engage with complex issues through an incredibly powerful pedagogy.

Lessons that are uncomfortable are not always bad, in fact learning itself is a dangerous act. Students cloaked in safety and shielded from discomfort will not be able to reach their potential, both as learners and active citizens. The Stolen Generations are also a dark part of Australian history which must be recognised by all members of our community if reconciliation is to occur. Students and schools are not exempt from this. Far from being too young, these students are in a prime position to discern racism, prejudice and injustice.

The school and Catholic Diocese have bravely said that these lessons will continue, albeit in another form, emphasising that the intentions were sound, but the execution was flawed. We need educators who are risk-takers, willing to tackle big issues, particularly our shameful treatment of indigenous Australians.

It would be incredibly sad if this isolated incident prevented teachers from being creative and using drama effectively in their classrooms.

 

Dr Rachael Jacobs is an Arts Education lecturer in the School of Education at Western Sydney University, Australia.